Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells.
نویسندگان
چکیده
BACKGROUND The p14(ARF) protein encoded by the INK4a/ARF locus promotes degradation of the MDM2 protein and thus prevents the MDM2-mediated inhibition of p53. Homozygous deletion of the INK4a/ARF locus is common in human mesothelioma and may result in the loss of p14(ARF) and the inactivation of p53. We designed this study to evaluate the biologic and potential therapeutic roles of p14(ARF) expression in mesothelioma cells. METHODS AND RESULTS We constructed Adp14, an adenoviral vector carrying human p14(ARF) complementary DNA, and used it to transfect human mesothelioma cell lines H28, H513, H2052, and MSTO-211H. Overexpression of p14(ARF) led to increased amounts of p53 and the p21(WAF) proteins and dephosphorylation of the retinoblastoma protein. The growth rate of mesothelioma cells was inhibited markedly by infection with Adp14 compared with mock infection or infection with a control adenovirus vector, AdCtrl. Overexpression of p14(ARF) induced G(1)-phase cell cycle arrest and apoptotic cell death. Cytotoxicity assays showed that Adp14 had a statistically significantly (P =.002) greater effect on colon cancer (HCT116) cell lines containing two copies of the wild-type p53 gene than on p53-null cells, suggesting that functional p53 is a critical determinant of p14(ARF)-mediated cytotoxicity. CONCLUSIONS The transfection of p14(ARF) into mesothelioma cells led to the overexpression of p14(ARF), which resulted in G(1)-phase arrest and apoptotic cell death. These results suggest that this gene therapy-based approach may be of use in the treatment of mesothelioma.
منابع مشابه
p14(ARF) modulates the cytolytic effect of ONYX-015 in mesothelioma cells with wild-type p53.
ONYX-015 has been reported to kill selectively tumor cells lacking functional p53. Genetic alterations of INK4a/ARF locus, which is a predominant event in malignant pleural mesothelioma, may result in loss of p14(ARF) and subsequent disruption of p53 pathway in cancer cells. In the present study, ONYX-015 was able to kill three mesothelioma cell lines (H28, H513, and 211H) with wild-type p53 bu...
متن کاملDistinct E2F-mediated transcriptional program regulates p14ARF gene expression.
The tumor suppressor p14(ARF) gene is induced by ectopically expressed E2F, a positive regulator of the cell cycle. The gene is expressed at low levels in normally growing cells in contrast to high levels in varieties of tumors. How p14(ARF) gene is regulated by E2F in normally growing cells and tumor cells remains obscure. Here we show that regulation of p14(ARF) gene by E2F is distinct from t...
متن کاملAdvances in Brief p14 Modulates the Cytolytic Effect of ONYX-015 in Mesothelioma Cells with Wild-type p53
ONYX-015 has been reported to kill selectively tumor cells lacking functional p53. Genetic alterations of INK4a/ARF locus, which is a predominant event in malignant pleural mesothelioma, may result in loss of p14 and subsequent disruption of p53 pathway in cancer cells. In the present study, ONYX-015 was able to kill three mesothelioma cell lines (H28, H513, and 211H) with wild-type p53 but lac...
متن کاملp14(ARF) inhibits the functions of adenovirus E1A oncoprotein.
The tumour suppressor ARF (alternative reading frame) is one of the most important oncogenic stress sensors. ARF provides an 'oncogenic checkpoint' function through both p53-dependent and p53-independent mechanisms. In the present study, we demonstrate a novel p53-independent interaction between p14(ARF) and the adenovirus oncoprotein E1A. p14(ARF) inhibits E1A transcriptional function and prom...
متن کاملInduction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes: involvement of p53 accumulation via ARF-mediated MDM2 down-regulation.
Transcriptional factor E2F-1 as well as tumor suppressor p53 have been shown to cause apoptosis independently in some types of human cancer cells when overexpressed. Here we report that sequential transfer of the wild-type p53 and E2F-1 genes efficiently induces apoptosis in human esophageal cancer cells and that E2F-1 overexpression directly, activates expression of p14 (ARF), which inhibits M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the National Cancer Institute
دوره 92 8 شماره
صفحات -
تاریخ انتشار 2000